Geosci. Model Dev. Discuss., 7, 181-216, 2014
www.geosci-model-dev-discuss.net/7/181/2014/
doi:10.5194/gmdd-7-181-2014

© Author(s) 2014. CC Attribution 3.0 License.

Estimation of uncertainties due to data
scarcity in model upscaling: a case study
of methane emissions from rice paddies
in China

W. Zhang', T. Li', Y. Huang®, Q. Zhang', J. Bian"?, and P. Han'

'LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing,

100029, China

2LVEC, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
3Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China

Received: 22 October 2013 — Accepted: 30 November 2013 — Published: 10 January 2014
Correspondence to: T. Li (litingting@mail.iap.ac.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

181

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< |
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/181/2014/gmdd-7-181-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/181/2014/gmdd-7-181-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

Data scarcity is a major cause of substantial uncertainties in regional estimations con-
ducted with model upscaling. To evaluate the impact of data scarcity on model up-
scaling, we introduce an approach for aggregating uncertainties in model estimations.
A data sharing matrix was developed to aggregate the modeled uncertainties in divi-
sions of a subject region. In a case study, the uncertainty in methane emissions from
rice paddies on mainland China was calculated with a local-scale model CH4MOD. The
data scarcities in five of the most sensitive model variables were included in the analy-
sis. The national total methane emissions were 6.44—7.32 Tg, depending on the spatial
resolution used for modeling, with a 95 % confidence interval of 4.5-8.7 Tg. Based on
the data sharing matrix, two numeral indices, /g and /4, were also introduced to sug-
gest the proper spatial resolution in model upscaling.

1 Introduction

Global change, including climate change due to the accumulation of greenhouse gases
(GHG) in the atmosphere, is an important issue for scientists and policy-makers around
the world. Because of the high spatial heterogeneities in global changes, models are
widely used to delineate spatial variations and make regional estimations (Harvey,
2000). The models used in regional or global studies differ widely in terms of their
spatial scales. Many of these models are site-specific, describing processes at local
scales, including Century (Parton et al., 1993), RothC (Jenkinson and Rayner, 1977),
DNDC (Li et al., 1992) and Agro-C (Huang et al., 2009; Yu et al., 2012). Extrapolat-
ing a site-specific model to a regional or global scale is usually referred to as “model
upscaling” (King, 1991; van Bodegom et al., 2000). A common framework of this up-
scaling involves partitioning a large region into smaller, individual areas and running
the model for each area (Matthews et al., 2000; Li et al., 2004; Yu et al., 2012).
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Here, we use the term “cell” to refer to each small division of a large region. The
cells may be of equal size (such as pixels of an image or grids of a raster dataset),
but they can also be spatially irregular (e.g., counties or provinces of a nation). In
model upscaling, the first problem modelers face is how to make the divisions. It is
preferable to partition the region so that the model inputs in the cells are as statistically
independent of each other as possible (King, 1991; Ogle et al., 2003, 2010). When data
are scarce, however, the criterion of inter-cell independence may result in a partitions
of large cells, leading to a reduced level of detail. An additional challenge is the great
variability in the availability of data for the model inputs, which complicates the selection
of an appropriate cell size. A properly partitioned subject region should balance the
differences in spatial data abundance among model inputs. If the cell size is too large,
substantial spatial variation in the model input variables will be lost after within-cell
averaging (van Bodgegom et al., 2002; Verburg et al., 2006). Scientists tend to use the
finest spatial resolution possible to express details in spatial variation in their modeling
results. However, finer spatial resolution requires sufficient model input data; otherwise,
data must be shared among cells for at least some, if not all, of the model inputs. This
kind of inter-cell non-independence among the cells (resulting from data scarcity and
requiring data sharing) complicates the uncertainty analysis (Ogle et al., 2003) when
finer spatial resolutions are adopted.

To address as many details of spatial variation as possible, sufficient data are needed
for model inputs. However, the data are usually far from abundant, and they differ
greatly from one model input variable to the other. For example, to estimate national
methane emissions from rice paddies, it is critical to obtain detailed information on or-
ganic matter amendments and field irrigation in rice cultivation (Khalil et al., 2008; Peng
et al., 2007; van Bodegom et al., 2000; Wassmann et al., 1996). Such data, however,
are seldom available on a regional scale (Zhang et al., 2011).

No matter which cell size is selected, the problem of estimating uncertainty in model
estimates is always about estimating within-cell variance and, thereafter, the aggrega-
tion of the within-cell variances. The uncertainty analysis over a large region thus has
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two steps: (i) properly accounting for the uncertainty in each small division, i.e., within-
cell variance, and (ii) aggregating the within-cell uncertainty correctly to produce the
overall regional uncertainty (King, 1991; van Bodegom et al., 2000). The uncertainty
in model estimates is a consequence of imprecision in model performance, errors in
model inputs and validation data etc. (Klepper, 1997; van Bodegom et al., 2000). To
analyze uncertainties due to errors in model inputs, representative errors and measure-
ment errors, the Monte Carlo simulation has been recognized as an effective method
(IPCC, 2000), and it has been applied in many studies (Ogle et al., 2003, 2010; Yu
et al., 2012). By constructing probability density functions (PDFs) for model input vari-
ables and coefficients, or joint/Bayesian PDF if possible, variations of the model inputs
over a certain area or at a specific site can be statistically depicted. Based on the PDFs
derived from measurement data and/or a priori knowledge, the Monte Carlo method
involves randomly and repeatedly drawing values from the PDFs to drive the model
running and produce varying model estimates.

After the Monte Carlo simulation is performed for within-cell uncertainty analysis in
each division of a large subject region, we face the problem of uncertainty upscaling.
In the case of “independent” partitioning of the entire subject region, the uncertainty
upscaling can be quite simple, as explained by the statistical “Law of Large Numbers”.
An independent, random variable is assigned to depict variations in the model estima-
tion in each division (IPCC, 2000; Ogle et al., 2010). As previously noted, however,
a paucity of data for some of the model variables and a small cell size division of the
entire subject area may result in data sharing among divisions, which is problematic for
the model variables that lack sufficient data to support fine-resolution partitioning. Up-
scaling the uncertainties in the model outputs must deal with this kind of “dependency”
appropriately.

The objective of the present study is to find a way of evaluating impacts of data
scarcity on regional estimation uncertainties, apart from the other causes of uncertain-
ties. We will develop a data sharing matrix as the kernel of the uncertainty aggregation
in model upscaling and discuss how different spatial resolutions affect the regional
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estimation uncertainties, given the same data availability for different spatial division
schema. As a case study, we performed the uncertainty analysis of the national rice
paddy methane emissions inventory of mainland China with CH4MOD, a model devel-
oped to simulate methane emissions from rice paddies (Huang et al., 1998a, 2004).

2 Methods
2.1 Uncertainty assessment in model upscaling

Figure 1 shows a flowchart of model upscaling in the case study. The solid arrows in
Fig. 1 represent procedures of estimating national methane emissions, and the hol-
low arrows describe the uncertainty assessments accompanying the model upscaling.
Although many studies have demonstrated how to upscale a model to make regional
estimations from various baseline scenarios (Matthews et al., 2000; Li et al., 2004; Ogle
et al., 2010), the main focus of the present study is on aggregating the uncertainties in
model estimations due to data scarcity.

2.1.1 Within-cell variation in model estimation

When partitioning the large region under consideration into spatially adjacent divisions,
the within-cell variation must be accounted for at first (King, 1991; van Bodegom et al.,
2000; Ogle et al., 2003, 2010). The baseline model estimation is usually performed by
running the model once in a cell. Each model input variable will have one datum or one
time series of data, e.g., daily weather observations. If there are multiple data available
for a model input variable in a cell, they are averaged before modeling. The within-cell
heterogeneity of the model estimation will therefore be lost after averaging and will
cause errors in the model’s estimation. This type of error is referred to as the “fallacy of
average” (Verburg et al., 2006). In contrast, the within-cell PDF of the variation in the
model variable can also be established by statistical analysis of the data and/or expert
estimation (Ogle et al., 2010; IPCC, 2000). The Monte Carlo simulation is considered
185
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an effective approach to evaluate within-cell variation or uncertainty in model estimates
due to errors in model input variables and their interactions, and it is thus used in the
present study (Fig. 1).

2.1.2 Spatial uncertainty aggregation in case of data scarcity

In each cell, the model estimation via Monte Carlo iteration produces a numeric depic-
tion of a random variable V;(m,, 0;), where m; and o; are the statistical mean and stan-
dard deviation, respectively, of the random variable V;. Thereafter, the model upscaling
involves the summation of the random variables V, = V; +, + ... + V. The aggregation
of uncertainty, represented by the statistical variance or standard deviation, is gener-

N N N

alized as Var(> X;))= 2> > Cov(X;, X;) (Ross, 2006), and it can also be transformed
i=1 i=1j=1

into quadratic summation of the elementary variances via the standardized variance-

covariance matrix:

ot=D 0;xCyxo;, (i=1,.,N, j=1,..,N) (1)
i,j

where ag is the aggregated variance of the regional estimation and o; and o, are the
standard deviations of the within-cell variations in cells / and j, respectively. The ma-
trix C is comprised of coefficients C,-/-, which stand for “correlations” between individual
cells. Here the “correlation” is a measure of how the model outputs in two cells vary-
ing concurrently because they may share common data of the model inputs. If the
estimation in cell / is over-/under-estimated, the estimation in cell j will probably be
over-/under-estimated also because they share common data, and vice versa. The ag-
gregation of the model outputs can be quite simple if the model estimate is made with
independent data in each cell. In this case, the matrix C will be an identity matrix in
which the diagonal elements will be 1 and all of the off-diagonal elements will be 0.
The aggregation in Eq. (1) will thereafter indicate the arithmetic sum of the within-cell
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variances, as addressed by the Law of Large Numbers. However, when there are not
sufficient data to support independent calculation among cells, the off-diagonal ele-
ments, C;;, of the matrix C will no longer be zero.

In the present study, C;; was empirically calculated by the numerical experiments.
For different level of data sharing between two cells (Table 1), the model estimations
in the two cells were iteratively calculated with CH4MOD. The model inputs were ran-
domly selected from the ranges of the variables (Table B1), respectively. When there
was data sharing between the two cells for a variable in Table 1, the value of the vari-
able was selected once for the two cells. And for the variable with no data sharing, the
value of the variable was selected separately for the two cells. The correlation coeffi-
cients (C;;) of the model estimations in the two cells was statistically calculated with
a large amount, 1000 iterations in the present study, of the paired model estimations in
the two cells.

2.1.3 Indicators of data scarcity in model estimation

A common problem in making a model estimation for a large region is that the available
data for the model input variables differ greatly. To evaluate the overall data scarcity of
the model input variables, two indicators are defined:

15¢;,, n>o0

ls =3 17 )
0, n=0
N

Ip = —— (3)

m
m Nk
k=1

where C;; is the element of the DS matrix defined in Eq. (2) and n is the total number

of off-diagonal, non-zero elements of the DS matrix. In Eq. (3), N is the total number

of cells (divisions) that partition the entire region under consideration and N, is the
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number of data points for the model variable k. When the off-diagonal elements of the
sharing matrix are all 0, indicating abundant data (no sharing) among the cells for all of
the model input variables, /ys = 0 and /g = 1. The other extreme, when the off-diagonal
elements of the DS matrix are all 1, indicates a severe data scarcity and complete data
sharing among the cells for every model input variable, /ys =1 and /g = N.

Data scarcity refers to the data abundance relative to the spatial resolution, i.e.,
spatial details we intend to depict via the model simulation. With all the model input
data on hand, we may expect more data scarcity, and larger /4, when we choose
a smaller cell size and vice versa. An /4 of O indicates a “perfect” data abundance for
the chosen spatial resolution. But this “perfection” may, conversely, imply that we have
chosen too large of a cell size and that some spatially varying details in the model
inputs were lost, a severe “fallacy of average.” The regional partitioning should, in this
case, take a finer spatial resolution to show more heterogeneous details in the model
estimation.

2.2 Uncertainty assessment of estimated methane emissions from rice paddies
in China

2.2.1 CHA4MOD and input variables

In this case study, we used the model CH4MOD to estimate methane emissions from
rice paddies in China. CH4MOD is a semi-empirical model that simulates methane
production and emissions from rice paddies under various environmental conditions
and agricultural practices (Huang et al., 1998a, 2004; Xie et al., 2010).

The CH4MOD model runs with a daily step and is driven by air temperature. The
main input variables include soil sand percentage (SAND), organic matter amend-
ments (OM), rice grain yield (GY), water management pattern (W) and rice cultivar
index (VI). Appendix A describes CH4MOD and the compilation of model inputs. More
detailed information regarding the model development, validation and application has
been provided elsewhere by the authors (Huang et al., 2004, 2006; Zhang et al., 2011).
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2.2.2 PDFs of the model input variables

Many studies (Khalil and Butenhoff, 2008; Li et al., 2004; Matthews et al., 2000; Van
Bodegom et al., 2002) have suggested that a significant proportion of the uncertainty in
regional rice paddy methane emissions arises from data scarcity, especially with regard
to the soil sand content (SAND), organic matter amendments (OM), rice grain yield
(GY), water management (W) and rice cultivar index (VI). The CH4MOD sensitivity
analysis similarly shows the importance of these five factors in methane emissions
(Table B1 in Appendix B). Figure 2 illustrates the data abundance of the five model
variables. The data for soil sand content is a 10 km by 10 km raster dataset made from
soil profiles via spatial interpolation (Oberthir et al., 1999; Shi et al., 2004, 2006).
Although a certain proportion of the immense spatial variation in soil properties may be
lost after spatial interpolation (Goovaerts, 2001; van Bodegom et al., 2002), the gridded
soil data are still the most detailed data of the five model inputs. In descending order of
data abundance, the other four factors are GY, OM, W, and VI. Assuming a normal
distribution, the PDFs of four factors (all except W,;,) were parameterized by statistical
analysis of their data.

With a specific spatial resolution, e.g., using administrative counties as divisions,
the PDF of SAND in a division was calculated with the grid data within the division.
Because every county has only one datum for GY, no PDF was assumed for GY when
counties were adopted as divisions. Although the yield of rice grain is not the same at
every place throughout a county, we have no more detailed data of the grain yield that
would allow us to make PDFs of the GY variable.

The data on other two variables, OM and me, were collected and statistically an-
alyzed to produce PDFs (Tables 2 and 3) on provincial and regional scales (Fig. 2b).
The rice paddy methane emissions vary notably with rice varieties (Singh et al., 1997).
The variety index (VI), which accounts for the methane emissions differences between
rice varieties (Huang et al., 1998a, 2004), ranged from 0.5 to 1.5, and it typically has
the value around 1.0 for most rice varieties (Huang et al., 1997, 2004). We assumed
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the 95% Cl in VI was 0.5 to 1.5 and exhibited a normal distribution. In the case of par-
titioning the entire nation into counties, the counties included within a province and/or
grand region must share data and PDFs for the variables OM, W, and VI.

The PDFs in the case study of rice paddy methane emissions did not encompass
all sources of uncertainties for the five variables. Careful planning in building PDFs
of the model variables will improve the reliability of the uncertainty assessment. At
present, we are focused on uncertainty aggregation in model upscaling when facing
data scarcity.

2.2.3 Uncertainty calculation and aggregation

To evaluate how the adoption of cell sizes influences the uncertainty of regional
estimations, we used three partitioning schema, S1, S2 and S3, to estimate the
methane emissions in China with the same previously described datasets. The coun-
ties, provinces and grand regions were used as the spatial divisions of China in the
three scenarios, respectively. In S2 and S3, the PDFs of rice grain yield were calcu-
lated with statistical analysis of census data. The Monte Carlo iteration was performed
500 times in each cell to calculate the within-cell uncertainty.

For each of the three scenarios, the elements of the DS matrix were valued by refer-
encing to the correlation coefficients (C;;) in Table 1 based on the state of data sharing
illustrated in Fig. 2b. With the within-cell variations of methane emissions calculated via
the Monte Carlo approach, the aggregation of the model estimates were then fulfilled
via Eq. (1) for early, late and middle rice. When combing the estimation results for the
three rice ecosystems, Eq. (1) was again utilized for the OM and VI data sharing by the
three rice ecosystems.

After aggregation, the confidence interval, e.g., 95% CI of the national methane
emission, was derived via the parameterized PDF of the aggregated estimate. As-
suming a Gamma distribution (Fig. B1 in Appendix B), the two parameters of the
PDF, shape (a) and scale (8) were calculated by the momentum method, where
B = variance/average and a = average/( (Ross, 2006).
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3 Results and discussion
3.1 Methane emissions from rice paddies in China and their uncertainties

In 2010, the total rice harvest area of China was 29.9 Mha (1 M = 106). The national to-
tal methane emissions were 6.44-7.32 Tg, depending on the spatial resolution used
for modeling (Table 4). In each individual county, the within-cell standard deviation
of methane flux, seasonal methane emissions per unit area, as calculated via Monte
Carlo methods, was 13.5-89.3 % of the statistical mean. Because no errors were con-
sidered in the area from which rice was harvested, the relative uncertainty for methane
emissions was the same as in the methane flux estimation. In the case of errors in the
rice harvest area being included, the uncertainty of methane emissions in each cell
can be calculated with Rule B of IPCC (2000) before aggregation.

When data sharing between counties was not accounted for, the falsely aggregated
standard deviation was approximately 1.7-2.2 % of the national emissions according
to the Law of Large Numbers. However, when the correlation of the model estima-
tion in cells was considered (Table 1), the overall aggregated standard deviation was
16.3 % of the total emissions, ranging from 18.3—-28.0 % for early, late and middle rice
ecosystems (Table 4). This finding implies that intensifying data quantities significantly
reduces uncertainties in regional estimations by reducing the data sharing and the cor-
relations in the DS matrix. Assuming a Gamma distribution (Fig. B1 in Appendix B), the
95 % confidence interval (Cl) of the national total methane emissions, made by the mo-
ment matching approach with my and oy, was 4.5-8.7 Tg at the S1 spatial resolution
(Table 4).

The national methane emissions from rice paddies in China have been estimated
in many previous studies. Table 5 lists those studies that included uncertainty assess-
ments. With the exception of results from Huang et al. (1998), in which higher emis-
sions were produced because of the continuous flooding used for rice cultivation in the
study, the uncertainties in all other studies largely overlapped with those of the present
study, although significance levels for the uncertainties were not explicitly provided. The
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results in other studies (not list in Table 5), e.g., Ren et al. (2010), Li et al. (2002) and
Yao et al. (1996), also fell within the ranges shown in Table 4. Most of these previous
studies focused on organic matter application and water regimes in their estimations
of uncertainty (Table 5) because of data scarcity in these two factors. Taking into con-
sideration the tremendous spatial heterogeneity of soil characteristics, Li et al. (2004)
believed that these were the most sensitive factors accounting for uncertainties, and the
uncertainty was between 2.3—10.5Tg yr‘1 (1.7-7.9 Tgyr‘1C) for mid-season drainage
irrigation and 8.5-16.0 Tgyr'1 (6.4-12.0 Tgyr'1C) when continuous flooding was ap-
plied.

Uncertainty in regional rice paddy methane emission models comes from multiple
sources. A comprehensive uncertainty analysis should synthetically include all major
uncertainty sources (IPCC, 2000; van Bodegom et al., 2002). In the present study,
the within-cell variances of the five most sensitive factors, i.e., SAND, GR, OM, me
and VI, were parameterized and included in the Monte Carlo simulations, but there are
also other factors that may contribute to uncertainties (van Bodegom et al., 2002). And
moreover, there may be covariance between the input parameters. For example, the
rice variety (VI) and/or soil texture (SAND) may have impacts on the irrigation applied
(Woin)- With sufficient data, we may quantify the correlations between the input param-
eters, and then build a joint/Bayesian PDF of the input parameters. Incorporation of
correlations of the input parameters will improve the estimation of the within-cell vari-
ances. But facing the difficulty of data scarcity, we have to parameterize the within-cell
variance of each input parameter separately at present. Apart from the data scarcity,
model imperfections due to a poor understanding of the complexity of the ecosystem is
also a primary source of estimation bias. A model encompasses functions and equa-
tions that describe the physical processes of interest, but it cannot involve every detail.
The model inaccuracy may bias the estimation away from the true value, which is usu-
ally evaluated by model validation (Huang et al., 2004). In the present study, however,
we did not incorporate the error of model inaccuracy into the uncertainty assessment.
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3.2 Data scarcity, spatial resolution and the uncertainties in regional estimation

The uncertainty of regional methane emissions in Table 4 is mainly caused by errors
and a scarcity of model input data (Fig. 2). When the abundance of data for model
variable differs significantly (Fig. 2), modeling at a finer spatial resolution does help to
reduce the estimation uncertainty. In Table 4, the 95 % CIl was 3.4-12.3 Tg when mod-
eling was performed at coarse resolution (S3). On the provincial scale (Scenario S2),
however, the 95 % CI narrowed to 4.8—-10.4 Tg, and the aggregated standard deviation
was 19.5% of the national total emissions. However, without sufficient data support
(Fig. 2), upscaling a model at an over-fine resolution makes no substantial difference,
as that in Table 4 for S1. Although the uncertainty was reduced further when the spatial
resolution was at the county level, this approach is not cost-effective, and the indicator
I rises rapidly from up to 3 at the provincial scale to more than 27 at the county scale
(Table 4). The /g indicates the redundant cost, higher /g means more redundant pro-
cessing. Beyond the processing cost, the spatial resolution of 10km x 10km (Fig. 2b)
might reduce the estimation uncertainty a bit more.

In Table 1, sharing data of the higher sensitivity variable, e.g., SAND vs. Yield in
Table B1, may result in a larger correlation coefficient C;;. While C;; in Table 1 is com-
putation intensive which needs a large amount of modeling iterations, a rough estima-
tion (Eq. 4) of C;; may be meaningful in finding the proper spatial resolution before the
model up scaling is carried out.

m
2> lij k % Sk
_ k=1

C/j =

(4)

M3

Sk

k=1

where s, is the sensitivity index of the model parameter k (e.g., Table B1 in the Ap-

pendix) and m is the number of model input variables under consideration. /;; , is a bi-

nary variable taking the value of 1 or 0. If cells / and j share data for the model input
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variable k, /,-j,k is assigned the value of 1; otherwise, it is 0. The sensitivity index s, is
to reflect the difference in importance of the model input variables to the model output.
Figure 3 shows the comparison of the correlation coefficients calculated by the two
ways. Though the rough estimation of the C;; by Eq. (4) differs to some extent from
those in Table 1, they show the same trend in reflecting impacts of data sharing on
correlations of the model outputs in two cells.

3.3 Model upscaling and spatial aggregation in a general view

To produce regional estimations in model upscaling, the aggregation procedure can be
divided into two parts: the pre-positive aggregation and the post-positive aggregation
(Fig. 4). An example of the pre-positive aggregation in the present study is the aver-
aging of the soil data included in each division. When no pre-positive aggregation is
applied (Fig. 4a, /4 is close to 1 and /g is far larger than 1), nearly every detail in the
model input parameters is kept before the model is run. The pathway in Fig. 4a is obvi-
ously computation-heavy, but it may not be effective in reducing the estimation uncer-
tainty, e.g., S1 vs. S2 in Table 4. At the other extreme (Fig. 4c, /4 = 0), all aggregations
are performed before the modeling, and no spatial variation of the model output is de-
picted. A finer spatial resolution is therefore necessary to explore some spatial variation
details in the model outputs. When facing remarkably diverse data abundance in model
input variables, as in the case of rice paddy methane emissions (Fig. 2), determining
where to place the modeling on the pathway in Fig. 4 is a balance between the model
variables with respect to data scarcity and the corresponding sensitivities.

The indicators /45 and /g may be referred to in finding the right position at which the
pre-positive aggregation stops and the modeling is actually carried out (Fig. 4b). As pre-
viously mentioned, a value of 0 or 1 for /4, all pre-positive or post-positive aggregation,
is not a good choice. /s should be a value between 0 and 1 to indicate a compromise
between data scarcity of model variables. From S3 to S2, both the /4, and / increase
and the estimation uncertainty is reduced significantly (Table 4). However, from S2
to S1, the estimation uncertainty and /45 change little, whereas /g increases markedly.
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This pattern implies that when /5 increases much faster than /4, the pre-positive aggre-
gation should stop, the modeling should take place, and the other aggregation should
be performed in the post-positive stage.

4 Conclusions

Data scarcity is a big challenge in making regional estimates of greenhouse gas emis-
sions. We developed a data sharing matrix to estimate aggregated uncertainties in
China’s rice paddy methane emission introduced by data scarcity. Based on the data
sharing matrix, we estimated that data scarcity in five most sensitive factors introduced
an aggregated uncertainty to the estimates, ranging from 4.5 to 8.7 Tg with 95 % confi-
dence interval. Aggregated uncertainty may vary with the spatial resolution for a given
dataset, while the indicator of /45 is useful for identifying a proper spatial resolution.
A proper spatial resolution corresponds to a value between 0 and 1 for the /45, which
represents the compromise of the data scarcity between model variables. Improving
data abundance of model inputs is expected to reduce the uncertainties in estimating
terrestrial greenhouse gas emission, in which the sensitivity of the model inputs also
plays a key role.

Appendix A

Description of CH4MOD and the compilation of model inputs

CH4MOD is an empirical model that simulates methane production and emissions from

rice paddies under various environmental conditions and agricultural practices (Huang

et al., 1998a, 2004; Xie et al., 2010). This model calculates methanogenic substrates’

production from rice plant root exudates and added organic matter (OM) decomposi-

tion. Both the OM decomposition and rice-plant-induced substrate production are sig-

nificantly influenced by environmental factors, including soil texture and temperature.
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The soil moisture controls the transformation fraction of the substrates into methane.
There are two major routes by which methane produced in rice paddy soils is emitted
into the atmosphere. One way is the aerenchyma system of the rice plants, and the
other is methane bubbles. Both pathways of methane emissions are formulated in the
model.

CH4MOD runs on a daily step, and it is driven by daily air temperature. Its input
parameters include soil sand percentage (SAND), organic matter amendment (OM),

rice grain yield (GY), water management pattern (W,,) and rice cultivar index (V1).

A1 Rice harvest area and grain production

Data on rice production and the harvest area of each province in 2010 were extracted
for early, late and middle rice from the nation’s statistical yearbook (EBCAY, 2011).
The county-level rice production census was obtained from the Chinese Academy of
Agricultural Sciences. Although the county-level data do not record fractions of early,
late or single rice cultivation, the rotation type in each county was represented using
the approach of Frolking et al. (2002) by referring to the climatic zonification of the
cropping system in China (Han et al., 1987).

Many studies have shown that the methane emissions differ notably among rice vari-
eties (Singh et al., 1997; Wang et al., 1997). In CH4MOD, the impact of rice variety on
methane emissions was parameterized as the variety index (VI) (Huang et al., 1998a,
2004). The VIl ranges from 0.5 to 1.5 and typically has a value of approximately 1.0 for
most rice varieties (Huang et al., 1997, 2004).

A2 Climate data and rice phenology

Daily mean air temperature is the only meteorological data required to drive the
CH4MOD model. Observations of the air temperature at 678 Chinese meteorologi-
cal stations in 2010 were acquired from the National Meteorological Information Cen-
ter (NMIC), China Meteorological Administration (CMA) (http://cdc.cma.gov.cn/). For
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counties without a meteorological station, the air temperatures at the nearest neigh-
boring station was used.

The rice phenology, including transplanting and harvesting dates, controls the start
and end of CH4MOD'’s run in simulating methane emissions. Data regarding the rice
phenology were originally iso-line maps, edited by Zhang et al. (1987), in the Atlas
of Agricultural Climate in China. The transplanting and harvesting dates for each grid
were spatially interpolated from the iso-lines via the TIN (Triangular Irregular Network)
technique (Aumann et al., 1991) and assigned to each county.

A3 Soil properties

The spatial database of soil sand content (SAND) is one of the databases developed
by the Institute of Soil Sciences, Chinese Academy of Sciences, from the samples
of soil profiles obtained during the Program of the Second Soil Survey of China and
subsequent surveys. The database is comprised of 10km x 10km raster datasets of
soil properties at depths of every 10 cm from the surface down. The spatial resolution
of the soil is the finest among the CH4MOD input parameters (Fig. 2).

A4 Organic matter amendment in rice paddies

The organic matter amended into rice fields include various types of farm manure
(green manure and animal manure, etc.) and crop straw as well as dead roots and
stubble from the previous crops. Roots remaining in the soil can be calculated with
the root/shoot ratio (Huang et al., 2007). Stubble was assumed to be one-tenth of the
aboveground straw biomass. The fraction of straw incorporation and farm manure ap-
plication, however, is not well known, and limited data are available. In the First National
Census of Pollution Sources conducted by the Ministry of Environmental Protection of
China (EPFNCPS, 2011), straw application in croplands was summarized on a provin-
cial level with the census data (Table 2). The straw application in Table 2 is not rice-
specific but, rather, incorporates all of the crops in each province. The bias may not be
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significant in provinces where rice dominates the crop cultivation. In addition to crop
straw, the incorporated crop residues include dead crop roots and stubble. According
to Zhao and Li (2001), stubble accounts for approximately 13 % of the total straw in dry
weight.

Until now, no regular statistical data or comprehensive census data have been avail-
able about the application of manure in rice cultivation. In this study, we investigated
organic matter application in rice cultivation. More than 1000 such investigation pa-
pers were collected and validated. The amount of farmyard manure application in each
province (Table 2) was part of the investigation results.

Appendix B

Sensitivity analysis of CH4MOD

Data of an environmental factor is usually expressed as M + e, where M represents
the measurement and e represents the error. When used as model inputs, the data
imprecision can result in uncertainties in the model outputs with diverse magnitudes
depending not only on the data imprecision but also on the model sensitivity. Model
sensitivity addresses the variability of the model output to variations in model inputs.
Usually, an individual variable sensitivity analysis is carried out by the “varying one
variable at a time” approach. In contrast to the individual variable sensitivity analy-
sis, a regional sensitivity analysis is performed in the present study, and simultaneous
variations of the model inputs account for interactions of the variables in the model.
The Monte Carlo method is commonly applied to simultaneously produce variations of
model inputs.

To scale the model input variation, the e/M is adopted for each of the variables to
make them comparable to each other, and all the CH4MOD input parameters have
positive values. In differential form, the expression e/M can be expressed generally as
d7X or d(Inx). The purpose of the model sensitivity analysis in the present study is to
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explore the modeled methane flux variability to variations of the model input parameters
as in formula (B1):

dx
cj/_y xS X X—k ord(Iny) o s, x d(Inx,) (B1)

k
where k is used to identify each model parameter and y represents the seasonal
methane emissions flux (g CH, m~?) calculated by CH4MOD with x, as input. S, is
the sensitivity index of the model variable k, and it is defined as the linear coefficient
between methane flux and the model input variables in term of fractal variation.

The Monte Carlo approach was adopted as the first step to pick values of the
model input parameters randomly from their value domains (Table B1), upon which
the methane flux was calculated with CH4MOD. This picking-and-calculating proce-
dure iterates for 20000 cycles. After logarithmic transformation of the model inputs
and outputs, simple variable linear regression was performed, and the sensitivity index
was defined as the slope coefficient of the regression equation.

Water management in rice cultivation is a key factor that impacts methane emissions
from rice paddies. In CH4MOD, the diverse water management strategies in Chinese
rice cultivation are grouped into five irrigation patterns and include flooding, drainage
and intermittent irrigation (Huang et al., 2004). In the case of this nominal variable, the
sensitivity index was calculated as follows:
lxz—|y’ Yk|, k,leW (B2)

Sy =
Yo

k#

where w = (1,2,3,4,5) in the formula (B2) is the code set of the irrigation water patterns
(Table B1). N is the total number of (j, k) pairs, and y,, y, and y, represent the mean
methane flux for irrigation water pattern /, k and all water patterns, respectively.
To run the CH4MOD simulation, daily air temperatures must be available for the
duration of rice growth from dates of transplanting to the harvest. In model sensitivity
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analysis, the temperature data are virtually created by the following equations from
Egs. (B3) to (B7).

Tziitr) = ?max — |t = Smax| x D1 + R(-0.5,0.5) (B3)

b - { éfmax ~Toun) /(Smax = Ss), T < S o
Tmax = Trin) /(Se = Smax)s T > Stman

Sy = R(Ss,S,) 5)

T ax = R(25.0,35.0) (B6)

T in = R(10.0,20.0) (67)

where the function R(v4,v,) returns a random number between v, and v,. S and S,
represent the transplanting and harvesting dates, respectively, and S, is the day on
which the air temperature reaches its maximum of the rice season. Time variable ¢
(Ss <t < S,) represents days after transplanting.

The results showed that methane emissions are most sensitive to field irrigation, with
a sensitivity index of 0.67 (Table B1). The soil texture, rice variety and organic matter
application rank lower, with sensitivity indices of 0.63, 0.51 and 0.47, respectively.
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Table 1. Lookup table of correlation coefficients of the model outputs in two cells due to data

sharing.

Data sharing between cell / and j

Data sharing between cell / and j

Yied OM Sand Wp, VI Cj Yied OM Sand Wp, VI Cj

0 0 0 0 1 0069 1 0 o o 1 0136
o 0 0 1 0 0347 1 0o o 1 0 0430
o 0 0 1 1 0413 1 0 0 1 1 0520
o o0 1 0 0 0295 1 0o 1 0 0 0343
o o0 1 0 1 0375 1 o 1 0 1 0478
o o0 1 1 0 0674 1 0o 1 1 0 0776
o o 1 1 1 079 1 0o 1 1 1 0.900
o 0 0O 0 0082 1 1 0 0 0 0170
o 1 0 0 1 0167 1 1 0 0 1 022
0o 1 0 1 0 0436 1 1 0 1 0 0481
0o 1 0 1 1 0519 1 1 0 1 1 0616
o 1 1 0O 0 039 1 1 1 0 0 0458
0o 1 1 0 1 0499 1 1 1 0O 1 0575
0o 1 1 1 0 0.760 1 1 1 1 0 0849
0o 1 1 1 1 0878 1 1 1 1 1 1.000
1 0o 0 0O 0 0066

* 1 means the two cells share data for the variable and 0 means they do not share data for the variable.
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Table 2. Fraction of straw incorporation and farm manure application in rice cultivation®.

Province Fraction Farm manure Province Fraction Farm manure

of straw (kgOM ha™')° of straw (kgOM ha™")

incorporationb incorporation
Mean Range Mean Range

Beijing 0.41 821.6 321.6-1321.6 Henan 0.56 1539.2 776.2-2302.1
Tianjin 0.29 9274 123.1-1731.6 Hubei 0.20 2101.3 981.1-3221.6
Hebei 0.62 1519.3 959.5-2079.1 Hunan 0.34 1836.9 846.7-2827.2
Shanxi 0.44 1824.8 1195.5-2454.2 Guangdong 0.23 12432 634.5-1851.8
Inner Mon. 0.12 1837.5 1042.4-2632.7 Guangxi 0.27 1384.7 645.4-2124.1
Liaoning 0.03 1108.5 657.8-1559.3 Hainan 0.22 1408.5 964.8-1852.1
Jilin 0.03 1308.4 421.5-2195.4 Chongging 0.17 1608.7 801.5-2415.8
Heilongjiang 0.23 1800.8 836.0-2765.6 Sichuan 0.18 1922.7 940.7-2904.7
Jiangsu 0.23 1263.5 605.6-1921.4 Guizhou 0.09 1793.2 740.2-2546.1
Zhejiang 0.35 1276.2 734.1-1818.3 Yunnan 0.10 1802.3 853.1-2751.5
Anhui 0.19 1507.5 424.3-2590.7 Shaanxi 0.34 1769.6 555.3-2983.9
Fujian 0.32 1123.1 852.6-1393.6 Gansu 0.03 1923.0 375.9-3470.1
Jiangxi 0.38 1612.2 842.3-2382.1 Ningxia 0.15 1448.6 515.5-2381.7
Shandong 0.55 1032.8 530.8-1534.7 Xinjiang 0.45 1612.0 407.7-2816.3

2 No data of farm manure application is available for Shanghai and Tibet. The data of Jiangsu and Guizhou was adopted for them, respectively.
b Statistics of the first national pollution source census conducted by the Ministry of Environmental Protection of China (CFPC, 2011); but no

variation range provided in the publication.
° Statistics of the investigation data of the organic application in crop cultivation made by the Institute of Atmospheric Physics, Chinese Academy of
Sciences. Green manure was not included in the present study because it accounts for a minor proportion in total organic matter application in rice

cultivation.
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Table 3. Proportions of different water irrigation patterns® in each grand region. 2 W. Zhang et al.

%)

@.

Grand  Baseline Uncertainty S

Region fraction fraction S

§S)

| 3:0.92;4:0.08° 1:0.31;2:0.31; 3: 0.30; 4: 0.08 g

Il 2:0.95;4:0.06 1:0.32;2:0.32; 3: 0.31; 4: 0.05 .
1l 2:0.82;4:0.18 1:0.27;2: 0.28; 3: 0.27; 4: 0.18

v 1:1.0 1: 0.34; 2: 0.33; 3: 0.33 g

Vv 1:1.0 1: 0.34; 2: 0.33; 3: 0.33 2

n

2 Refer to Huang et al. (2004) for the definition of water irrigation patterns. %-

® Means the water irrigation pattern 3 was applied in 92 % of the rice %

cultivation area in the Grand Region | (Fig. 2a), and the rest 8 % of rice area Q

was continuously flooded (water irrigation pattern 4). 8

O

%)

o)

(=

(2}

%)

2.

=}

o

Q

§S)

@

(cc) W)
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Table 4. Estimated methane emissions from rice paddies of China and their uncertainties.

Scenario  Spatial CH, SD ofthe 95% CI? lys Ig
Resolution Emission (Tg) Estimation (Tg) (Tg)

Middle rice

S1 County 4.03 0.74 (18.3%) 27-5.6 0.147 30.3

S2 Province 4.37 0.94 (21.4%) 2.7-6.4 0.153 2.7

S3 GR® 413 1.53 (37.1%) 1.7-7.6  0.069 1.4

Early rice

S1 County 1.02 0.28 (28.0%) 0.5-1.6 0.157 27.6

S2 Province 140 0.44 (31.4%) 0.7-24 0.117 1.9

S3 GR 1.34 0.60 (44.6 %) 0.4-2.7 0.069 1.2

Late rice

S1 County 1.39 0.30(21.6%) 0.9-2.0 0.157 284

S2 Province 1.56 0.45(28.7 %) 0825 0.118 2.0

S3 GR 1.73 0.79 (45.3%) 0.6-3.6  0.069 1.2

All rice

S1 County 6.44 1.05(16.3%) 4.5-8.7 - -

S2 Province 7.32 1.43 (19.5%) 4.8-10.4 - -

S3 GR 7.20 2.29 (31.8%) 3.4-12.3 - -

& 95 % CI (Confidence Interval) of the estimation was calculated from Gamma distribution. The shape and
scale parameters of the Gamma distribution were estimated by the emission estimation and the

corresponding SD.
® GR: Grand Regions in Fig. 2a.
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Table 5. Uncertainties in methane emission from rice paddies of China via various methods.

Method Uncertainty Range Reference

IPCC Tier 2/Statistical analysis on measured methane fluxes® 8.1+£3.7 (1993)b Cai et al. (1997)
Simplified CH4MOD model/Model input scenarios 7.2-13.6 (1993)°  Huang et al. (1998b)
MERES model/Organic matter scenarios 3.4-8.6 (1993) Matthews et al. (2000)
IPCC Tier 2/Organic matter amendment and irrigation scenarios 5.8-9.6 (1995) Yan et al. (2003)
DNDC model/Most Sensitive Factors 2.3-10.5 (1990) Li et al. (2004)
CH4MOD model/Monte Carlo 4.2-9.1 (2010) This study

@ Method the uncertainty assessment was made;
® the number in parentheses indicates the year when the estimation of methane emission was made;
¢ assuming continuous flooding in rice cultivation.

210

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

GMDD
7,181-216, 2014

Estimation of
uncertainties due to
data scarcity

W. Zhang et al.



http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/181/2014/gmdd-7-181-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/181/2014/gmdd-7-181-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7,181-216, 2014

Jaded uoissnosiq

Estimation of
uncertainties due to
data scarcity

9
o § W. Zhang et al.

Table B1. Sensitivity indexes of CH4MOD parameters. @

2

Parameters Value range  Sensitivity %

-_— Q

Min. Max. Index =

Grain yield (kg ha_1) 1000 9000 0.35 -
Soil sand content (%) 6 90 0.63

OM amendment (kgha™")" 200 6500 0.47 =

Rice cultivar index 05 15 0.51 2

Water regime 1,2,3,4,5 0.67 %-

" The fraction of OMN and OMS in the amended organic matters varies %

harmoniously between 0.45 and 0.55 to reflect differences in OM types. %

D

O

(7]

o

=

(7]

(7]

2

=)

o

Q

e

@

(cc) W)

211


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/181/2014/gmdd-7-181-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/181/2014/gmdd-7-181-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

[ Dataset of model input 1: soil sand ] [ Dataset of model input 2: rice yield ] [ Dataset of model input variable & ]

| |

Data sharing indicator /;;;

Cell i

Model outputs in cell i

Lookup table of
correlation coefficients

Sum up <

£

Aggregated uncertainty
represented by o

Gamma
distribution
assumption”

95% CI of the national
estimation uncertainty

National methane
emission m,

Fig. 1. Flowchart of upscaling CH4MOD to estimate methane emission from rice paddies of
China and the uncertainty aggregation. Notes: (a) if cell / and j sharing data of the model
input variable k, then /;; , =1, otherwise /;; , = 0; (b) the assumption of Gamma distribution
of the national methane emission was based on the results in model sensitivity analysis in
Appendix B.
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GRII

GRIIl

GRIV

GRV

Fig. 2. Administration boundaries of China on different scales and data abundance of the
CH4MOD input variables on different spatial resolutions. A grand region (GR) is a cluster of
provinces that are similar in rice cultivation: GR | (Guangdong, Guangxi, Hainan, Hunan and
Jiangxi); GR Il (Shanghai, Jiangsu, Zhejiang, Anhui, Fujian and Hubei); GR Il (Chongqing,
Sichuan, Guizhou and Yunnan); GR IV (Heilongjiang, Liaoning and Jilin) and GR V (Other

provinces).
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Fig. 3. Comparison of the correlation coefficients C;; calculated by two methods.
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Post-positive
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Fig. 4. Aggregation procedures in making regional estimation via modeling. Aggregation can
be carried out before/after the modeling or on both sides depending on data scarcity of the
model input variables. (e low sensitive variable; # medium sensitive variable; % high sensitive

variable).
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Fig. B1. Frequency distribution of the modeled methane fluxes in sensitivity analysis. The filled
bars are the CH4MOD outputs, and the filled circles are outputs of Gamma distribution. The
shape and scale parameters of the Gamma distribution were calculated with the statistical
average and standard deviation of the CH4MOD outputs: 8 = (std)®/(avg) and a = (avg)/8.
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